

Traffic Variations and their Influence on Performance Temporal Disaggregation of Volatility for ATM Benchmarking

25th Air Transport Research Society World Conference Antwerp, August 26th 2022

Thomas Standfuß¹, Matthias Whittome²

¹ TU Dresden, Institute of Logistics and Aviation ² Functional Airspace Block Europe Central

Agenda

- 1) Motivation
- 2) Metrics
- 3) Influence on Performance
- 4) Conclusion

Motivation *Demand for Air Navigation Services in Europe*

One of the busiest airspaces in the world:

- 30,123 flights per day on average (2019),
- Peak: 36,913 flights per day (2019).

Spatial distribution:

- Hot spots especially in the core area,
- Low demand in the north and northeast Europe.

Challenges:

- Seven large hubs within a diameter of 1,000km.
- Traffic flow and distribution are volatile, e.g., due to weather/environment, political crises, pandemics, or strikes. → Low predictability.
- In the future: New entrants such as drones, UAVs, etc.

Motivation How is it managed?

Air Navigation Service Providers (ANSPs):

- ANSPs are responsible for safe and efficient air traffic operations.
- Main Trade-off: Costs versus Capacity.

Fragmented Airspace:

- 38 Air Navigation Service Providers (ANSPs),
- 63 Area Control Center (ACCs),
- A large number of sectors.

High level of heterogeneity regarding:

- Provided services and covered airspaces,
- Systems and tools, working procedures,
- Data collection processes,
- Cost allocation.

Source: NEST. Provided by DFS

ANSP	Covered Airspaces		
	Upper	Lower	Terminal
Maastricht UAC	X		
Belgocontrol		Х	Х
ANA Luxembourg			Х
Skyguide	Х	Х	Х

Motivation *Why to address Traffic volatility?*

What is volatility?

• We define volatility as the variability of traffic flows along a specific unit (e.g., ANSP, ACC, or sector) within a given time period (e.g., week).

Initial research questions (selection)?

- How to measure volatility for performance benchmarking?
- Which periodical and operational levels have to be addressed?
- How does volatility influence ANSP performance?
- Has volatility increased over the past years?

Source: FABEC Volatility Task Force

Metrics *Status quo*

Proposed Metrics

- FABEC volatility task force suggested a score that sums up unanticipated traffic (for sectors).
- EUROCONTROL introduced a seasonality indicator for performance benchmarking. The score sets the peak load in relation to the average load.

Metrics *... and Time Horizons*

Requirement Engineering

- A metric should reflect changes in demand appropriately (sensitivity regarding traffic scenarios),
- It should consider pan-European heterogeneity,
- It should be applicable on different operational levels.

Some Potential Metrics

 $\sigma = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (R_i - \mu)^2} \quad \Rightarrow \text{ scale dependent}$ $GINI = \frac{2 \cdot \sum_{i=1}^{n} i \cdot x_i}{n \cdot \sum_{i=1}^{n} x_i} - \frac{n+1}{n} \quad \Rightarrow \text{ scale independent}$

Temporal Disaggregation

- As shown by FABEC, volatility may act on different time intervals.
- We distinguish three time horizons:
 - The seasonality is considered to be **long-term** volatility.
 - Medium-term volatility addresses daily fluctuations within a week. As an example, traffic tends to be lower at weekends.
 - Traffic fluctuations over one day are considered as **short-term** volatility. It is mainly caused by a (relatively) low demand during nighttime.
- Depending on the time interval, different data sources are available, such as NEST data (hourly) or PRU data (daily).

Metrics Application using GINI coefficient

Metrics *Applicability of GINI*

EUROCONTROL score versus GINI coefficient:

Influence on Performance *Model and Method*

Goals:

- High volatility is expected to hamper productivity:
 - however, there are multiple further influencing factors,
 - Does each score affect performance equally?
- Method applied: Regression Analysis.
- The model represents an extension of the analyses of a <u>PhD-study</u>. It considers exogenous, partially exogenous, and endogenous factors.
 - The dependent variable is represented by ATCO productivity (see PRU / EUROCONTROL reports).
 - VOL_ST, _MT, and _LT represent the volatility factors.
 - Airspace and traffic characteristics, ownership forms, and socio-economic factors are considered as well
- We calculated both cross-sectional and panel models. Model quality was maximized by variable reduction.

Factor	Metric	Meaning
AIRP	0/1	Airport Ownership
COORD	Nb	Coordination – Number of neighboring
		airspaces
COSTS	€	Employment costs per ATCO
DELATM	0/1	Delegated ATM
DENSITY	Score	Traffic Density
DOM	%	Share of domestic flights
HI	Score	Horizontal Interactions
JSC	0/1	Joint Stock Company
L_AIRP	Nb	Number of hubs (>200.000 movements
		p.a.)
MET	0/1	MET Services
NOFAB	0/1	ANSP is no member of a Functional
		Airspace Block
NONA	%	Share of Non-ATCOs
OCEAN	0/1	Oceanic Airspace
OVER	%	Share of overflights
RES	Nb.	Technology proxy
SI	Score	Speed Interactions
SIZE	Km ²	Airspace Size
STATE	0/1	State-Owned
TIME	h	Working time per ATCO
VI	Score	Vertical Interactions
VOL_LT	%	Seasonality
VOL_MT	%	Weekly Volatility
VOL_ST	%	Daily Volatility
WEALTH	€	Wealth of the country, GDP per Capita

Influence on Performance *Results*

Results:

- The shown result represents one specification using crosssectional data.
- In model 1, volatility is expressed by the GINI score, model 2 uses the standard deviation as volatility.
- The results for model 1 are plausible with regard to positive or negative signs of the variables. Further, all variables are statistically significant.
- Using standard deviation (model 2) hardly changes results. The variable DENSITY is now included. All variables are statistically significant, except the constant and DENSITY.
- For neither Model 1 nor Model 2 the VIF test indicates collinearity
- Model quality is high, particularly for model 1.

Variable	Model 1	Model 2
const	-0,36 (0,493)***	-1,317 (0,407)
l_size	0,219 (0,064)***	0,316 (0,066)***
OVER	0,592 (0,141)***	0,559 (0,145)***
VOL_LT	-2,142 (0,621)***	-2,287 (0,674)***
VOL_ST	-1,548 (0,727)*	-0,002 (0,001)**
MAPE	-0,145 (0,082)*	-0,143 (0,083)*
COSTS	0,003 (0,001)***	0,003 (0,001)***
JSC	0,158 (0,058)**	0,143 (0,056)**
DENSITY		0,026 (0,013)
Adj. R ²	0,79	0,79
Log-Likelihood AIC	21,20 20,51 -24,39 -25,01	

Conclusions *What we have learned*

- 1. GINI and Standard Deviation are applicable for benchmarking purposes and improve the currently used EUROCONTROL score.
 - a) GINI should be used particularly when comparing different ANSPs or different operational levels.
 - b) Standard deviation is to be preferred when analyzing one unit over time.
- 2. Short- and long-term volatility have a statistically significant impact on productivity/efficiency.
- 3. The results might be used for an "overall" volatility score. The score might be used as a monitoring value, but also as an indication of the required system resiliency.

 $OVS = u \cdot VOL_{LT} + v \cdot VOL_{ST} = 0.58 \cdot VOL_{LT} + 0.42 \cdot VOL_{ST}$

- 4. For most of the ANSPs, volatility increased over the past years (before 2020). Further, extreme values became more often.
- 5. Volatility increases when disaggregating the operational level (e.g., ACCs, Sector groups).

Thank you

POC: Thomas Standfuss

TU Dresden Institute of Logistics and Aviation Chair of Air Transport Technology and Logistics

Thomas.Standfuss@tu-dresden.de Tel.+49 351 463-36834 Fax+49 351 463-36898

