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Abstract: Air Traffic demand and distribution fluctuates in long-, medium- and short-term perspective. In order to ensure 

safe and efficient flight operations, Air Navigation Service Providers need to ensure that enough capacity is available for 

airspace users. For this purpose, reliable traffic forecasts are necessary in order to avoid capacity shortages or excesses and 

subsequently costs. However, the provision of air navigation services is hampered by several effects i.e. unpredictable traffic 

patterns and trends. Despite awareness of such problem, there is not a common definition or metric to measure the so-called 

‘volatility’. The aim of this paper is twofold: to set out an approach addressing volatility measures for different spatial and 

periodical scopes, and to show the effects of demand fluctuations on the ATM system from a holistic point of view. 
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1 MOTIVATION 

Due to the growing number of flights as well as a high cost 

pressure by airlines, the provision of air navigation services 

(ANS) has recently drawn increasing attention from both 

the academic and the policy decision-makers perspective. 

A major challenge regarding ANS provision is ‘planning 

under uncertainties’ as a result, for example, of a volatile 

traffic demand in terms of movement numbers and flow 

patterns, which significantly influence resource planning 

and allocation. Several factors could cause or amplify 

volatility (i.e. weather phenomena, strikes, geopolitics, 

airline decisions or unexpected economic downturn [1]).  

Volatile traffic affects ANS planning at multiple time-

scales and operational levels. Changes in traffic demand 

and flow patterns have a direct influence on pre-tactical and 

strategical capacity planning [2]. Since airspace users tend 

to act more and more on a short-term basis, it seems 

reasonable to think that volatility has increased over the past 

years.  

Against this backdrop, the paper focuses on two issues. 

Firstly, it provides a specific definition and derived 

metric(s) in order to evaluate volatility in Air Traffic 

Management (ATM). Secondly, the influence of volatile 

traffic on ATM performance is analyzed, applying two 

different analysis methods.  

For that, it is structured as follows: Section 2 deals with the 

current situation of volatile demand in Europe, as well as 

with recent publications. Section 3 introduces volatility 

definitions and metrics, the latter being also applied in 

several data sets. The influence of volatility on performance 

is determined in section 4 by analyzing demand and delay, 

on the one hand, and by presenting a Fuzzy Cognitive 

Mapping, on the other hand. Section 5 finishes with some 

conclusions and determines a way forward. Although the 

paper is primarily based on European data and procedures, 

the results might be applied to other airspaces. 
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2 STATUS QUO AND LITERATURE REVIEW 

Today, Air Navigation Service Providers (ANSPs) 

represent one significant capacity restraining factor in 

commercial traffic, especially in regions with high traffic 

density. Long-term forecasts for 2050 predict an average 

annual traffic growth between 0.3% and 2.7% [3]. 

Moreover, the spatial distribution of demand is not evenly: 

the most frequented routes are within the core area of 

Europe, where seven large Hubs are located within a 1,000 

km diameter [4]. In this context, ANSPs are faced with 

continuous challenges in capacity management.  

An expansion of capacity requires investment in human 

resources and/or technology. However, an efficient 

resource planning is aggravated by insufficient prediction 

of actual traffic figures. The range and hence the uncertainty 

in the forecast for 2050 is about 15.6 million flights for 

Europe as a whole [3], but it does not determine the spatial 

distribution, respectively the growth rates for the individual 

ANSPs. In addition, the deviation between predicted and 

actual demand is often significant [5].  

Volatility is rather a new field of research in ATM context. 

The impact of volatility on performance has still neither 

been investigated by academic studies nor included in 

official EUROCONTROL benchmarking reports. As a 

result, volatility of air traffic is not considered in the policy 

decision-making process (see e.g. the performance scheme 

of the SES Regulations). This may lead to insufficient 

collection and/or distribution of route charges in terms of an 

efficient demand-capacity-balancing.  

In 2017, the Functional Airspace Block Europe Central 

(FABEC) 1  initiated a ‘Volatility Taskforce’ in order to 

identify volatility drivers, develop a metric for volatility and 

derive recommendations. As stated in the previous section, 

effects may contribute to volatility in multiple time periods 

and on several operational levels. The taskforce used a 

metric based on the share of unanticipated traffic, 

represented by the sum of intruder and extruder, in 

comparison to planned and actual traffic. Furthermore, they 

defined nine areas contributing to volatility, such as 

Geopolitics, ATFM or Weather [1,6] (see also annex, 

Figure 8). Although this study represented a first approach 

to the topic, the underlying metric might be seen as a way 

for measuring unpredictability, but not volatility. 

Furthermore it is not clear why the sum of intruder and 

extruder is used, since both effects partly compensate each 

other.  

In May 2018, FABEC and the Baltic Functional Airspace 

Block (Baltic FAB)2 conducted the workshop ‘Volatility in 

Air Traffic and its impact on ATM Performance’. The 

conference papers dealt primarily with unpredictability and 

                                                           

1 It compromises the ANSPs of France, Germany, Switzerland, 

Luxembourg Belgium, Germany and the Netherlands as well as 

Maastricht Upper Airspace Control (MUAC). 

capacity planning under uncertainties from an operational 

or an academic point of view (see e.g. [7]). 

EUROCONTROL uses ‘traffic variability’ as a metric for 

demand  fluctuations, by comparing the peak value with the 

corresponding average over a given time (e.g. yearly) and 

operational level e.g. Area Control Center (ACC) [8]. 

However, the measure proposed by EUROCONTROL has 

shortcomings: as only the highest and the average numbers 

are taken into account, the volatility in all other 10 months 

or 50 weeks is neglected. In addition, variability can be 

called ‘seasonality’, since only the whole year is considered 

(trends for 5 to 10 years for investment cycles or during a 

week for shift planning purposes are not contemplated). 

In summary one can state that the metrics introduced by 

EUROCONTROL and FABEC Volatility Taskforce 

provide a first approach to describe traffic demand 

fluctuations. Furthermore, spatial and temporal aspects 

were taken into account. However, even though it is 

commonly agreed that volatility has a high impact on 

performance [9], there is not a clear definition of the word 

itself within the ATM context nor are formulas available in 

order to quantify traffic demand volatility and its influence 

on delay and on other performance indicators. For all these 

reasons, a holistic approach including interdependencies 

between factors which cause or are influenced by volatility 

(cause and effect chain) is missing.  

3 VOLATILITY IN ATM 

3.1 Definition and Metrics 

Volatility can be characterized as the ‘width of the 

fluctuation’, and thereby as a risk measure. In the context of 

air traffic and ANS provision, volatility describes the 

variability of a traffic flow along a specific unit within a 

given time period. For definitions and formulas, see [10–

12]. According to financial measures, volatility σ denotes 

the (short-term) fluctuation of a time series by its mean or 

trend [13]. It is measured by the sum of standard deviation 

of change rates Ri between two or more periods (formula 

3-1). The mean is indicated as μ, where n represents the 

number of observations.  

 

3-1 Volatility Formula based on change rates 

This metric measures the ‘historic volatility’ and is time 

invariant. It summarizes the probability of observing 

extreme values of traffic demand. The changes might be 

defined absolute, relative or logarithmic. 

2 It is composed of the countries of Poland and Lithuania. 
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Formula 3-2 represents another alternative to approach 

volatility, by calculating the standard deviation based on the 

observed values h in period t (instead of the change rates). 

It is used in case of considering samples instead of the 

whole population. 

 

3-2 Time Invariant Volatility Formula 

Noting that the standard deviation is scale dependent, it is 

also worth computing the percentage coefficient of 

variation (CV), shown in formula 3-3.  

 

3-3 Coefficient of Variation 

Since the standard deviation and the coefficient of variation 

do not focus explicitly on the uncertainty aspect of 

volatility, it is also possible to use the Root Mean Square 

Percentage Error (RMSPE, formula 3-4) as a third measure, 

since it allows determining prediction errors.  

 

3-4 Root Mean Square Percentage Error 

Considering that the paper primarily focuses on finding a 

valid metric for ATM purposes, we focus on the application 

of formula 3-1 on different spatial and periodical scopes. 

Therefore, we use relative changes due to the heterogeneous 

size of the units. 

3.2 Database 

As stated in section 2, volatility may be computed over 

various time periods and operational levels. Since 

environment and objectives differ between these levels, we 

follow a macroscopic and a microscopic approach. At 

macro-level, we use the World Bank Databases for long-

term investigations and Performance Review Unit (PRU) 

for medium- and short-term analysis. We focus on ANSPs 

coordinated by EUROCONTROL.  

At micro-level, we use data provided by Deutsche 

Flugsicherung GmbH (DFS), containing figures on sector 

group level for ‘flights’ and ‘flight hours’ (as demand), as 

well as ‘ATCO-hours’ (representing resources). The data is 

available for the ACCs Karlsruhe (UU), Munich (MM), 

Bremen (WW) and Langen (GG).  

Annex Figure 9 emphasizes the necessity of considering 

multiple time periods. The graph shows the traffic 

                                                           

3 However, an exponential trend would fit better with the data 

movements per year worldwide. Furthermore, the overall 

(linear3) trend is represented by the dotted line. Considering 

other time periods will result in another trend and, 

according to the definition in the previous section, in other 

volatilities.  

The figure covers a very high aggregation level. Lowering 

the operational level, e.g. on ACC perspective, will 

probably increase volatility, since demand is expected to 

fluctuate more than in higher operational levels (see also 

Figure 2). Thus, it is expected that volatility grows with the 

disaggregation of data (law of large numbers).  

Figure 1 shows the number of IFR-Flight hours, 

differentiated by sector groups. Despite the fact that all 

sector groups belong to the same ANSP, the scattering is 

high: UU_East flight hours are approximately seven times 

higher than the ones of GG_EBG024. This divergence is 

caused by the different airspace characteristics: while 

Karlsruhe is only responsible for upper airspaces, Langen 

supervises lower airspaces and the corresponding sector 

group GG_EBG02 which is responsible for the 

southwestern area of Frankfurt airport, thereby controlling 

flights in the lower airspace, mostly with destination 

Frankfurt. As the traffic composition in the lower airspace 

is more heterogeneous, the capacity due to the complexity 

is lower and therefore comparatively less traffic is being 

controlled.  

 

Figure 1: Flight Hours per Sector Group, 2017 

Traffic figures may vary significantly over time. As an 

example, most airspace units experience traffic peaks in 

summer. Table 1 shows the number of flights for each ACC 

for the years 2016 and 2017, as well as the mean, minimum 

and maximum. The underlying annual shape of the demand 

curve is similar for all 4 ACCs (Annex, Figure 10).  

The largest number of flights occurs in summer, with the 

counter-peak in January or February. Karlsruhe UAC 

controls about three times more flights than Bremen ACC. 

However, the relative average is similar between all ACCs 

and all years (69%-75%).  

4 EBG = Einsatzberechtigungsgruppe = Sector group 
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 Year Sum Min Mean Max 

WW 2016 661,491 44,827 55,124 62,201 

2017 660,808 43,052 55,067 62,541 

UU 2016 1,778,658 119,283 148,222 174,421 

2017 1,844,836 120,163 153,736 181,295 

GG 2016 1,230,219 85,401 102,518 115,281 

2017 1,268,034 85,458 105,670 119,054 

MM 2016 1,082,839 75,277 90,237 102,265 

2017 1,120,980 77,239 93,415 106,325 

Table 1: Descriptive statistics of traffic movements (based on 

monthly counts) 

Generally, more volatility could be expected at the micro-

level, as sectors control less flights compared to sector 

groups, ACCs or ANSPs. The higher the amount of traffic 

the less volatility could be assumed, since one additional 

flight has a higher impact on lower operational levels. 

3.3 Application at Macro-Level 

As an example, Figure 2 shows the calculation of volatility 

for Belgium in a long-term perspective, by using Traffic 

movements. The graph shows the annual changes in air 

traffic (blue bars), the average change (red line) and the 

66% confidence interval (green lines). Applying formula 

3-1 on these figures results in a demand volatility of 17.5%. 

Using the same time period, Figure 3 shows the long-term 

volatility for a selection of countries. In long-term 

perspective, many influences may affect the distribution of 

traffic.  

Volatility figures are characterized by a high scattering. 

Considering the complete database, Paraguay has the 

highest volatility (202%) in traffic demand, while United 

Kingdom has the lowest (4.1%). However, high volatility 

scores are not common. The worldwide median is 16.8%.

 

 

Figure 2: Volatility for Belgium, long-term, based on yearly traffic movements 

 

Figure 3: Long-term volatility in traffic movements for selected countries 
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The long-term view is important for ANSPs in order to 

enable an efficient resource planning. The implementation 

of systems usually takes 8 to 12 years. However, it might be 

even more important to consider medium- and short-term 

fluctuation. As an example, the training of new ATCOs 

takes approximately 5 years. It is beneficial to use time-

based measures due to the possibility of subsumption 5 

(time- or level based6). 

Figure 11 (Annex) shows the volatility in traffic demand, 

represented by ‘IFR flight hours’, for EUROCONTROL 

ANSPs for a seven-year-period (2008-2014). Scores are 

similar to those based on ‘flights’, excepting for Malta Air 

Traffic Services (MATS) which is characterized by a 

deviation by about 6 percentage points. The volatility scores 

are lower than in long-term perspective for majority of 

ANSPs.  

As a second aspect, we consider seasonal demand shifts. 

Therefore, we used 2018 data on daily basis to calculate a 

monthly and yearly volatility score for each ANSP. The 

underlying parameter is ‘flights’, since  ‘flight hours’ were 

not provided by the database [14]. 

Figure 4 shows the volatility according to the corresponding 

ANSPs, differentiated to summer and winter season. Please 

note that, due to illustrational reasons, the ANSPs are 

represented by the corresponding countries and MUAC is 

missing in the figure. The monthly volatility scores are 

shown in Figure 5 for a selection of ANSPs. For data, see 

annex Table 3.   

  

Figure 4: Volatility Score for summer (left) and winter (right), 2018 

 

Figure 5: Monthly Volatility scores for ANSPs based on daily flights, 2018 

                                                           

5 It is not possible for flights due to double-counting 6 Aggregation of data regarding operational level 
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Both figures show that volatility is higher in winter for the 

majority of ANSPs. There are some extreme values, 

represented by Norway for both periods, and whole 

Scandinavia for winter season. The same effect is visible for 

FABEC-ANSPs: volatility decreases in summer and 

increases in winter. ANA LUX is confronted with the 

highest volatility in demand. This might be due to the 

overall smaller demand figures in winter (and for ANA 

Lux). Subsequently, there is a higher (relative) change rate 

for a similar (total) shift in summer. For December, the high 

volatility can be explained by a demand fluctuation at 

Christmas time and New Year’s Eve: on December 24th, 

25th and 31st, demand figures are significantly lower. 

3.4 Application at Micro-Level 

The analysis on ANSP level demonstrated that fluctuations 

in traffic demand occur differently. In addition, pure 

demand figures on this operational level might not reflect 

appropriately changes in traffic flows. Therefore, it is useful 

to disaggregate the analysis by sectors, since capacity is 

basically provided within this smallest entity of the airspace. 

Airspace structure is characterized by dynamic subdivisions. 

According to the demand, sectors can be splitted or merged. 

Volatile traffic hampers the efficient planning of these 

capacity enhancing measures significantly. However, sector 

data were not available for the study, so we apply the 

methodology on sector group data in order to calculate 

volatility. In this way we use ‘flight hours’ for demand.  

Traffic demand fluctuates considerably over the year, as 

shown in Figure 12 (annex). The upper peak represents 

three times more flight hours than the lower peak, 

depending on the considered sector group. Furthermore, 

weekly and seasonal effects are visible in the graph. 

According to Figure 6, volatility metrics differ quite 

substantially between the sector groups. On the one hand, 

the highest scores are visible for Bremen sectors north and 

south. On the other hand, three out of four sector groups are 

assigned to Karlsruhe UAC. Comparing Figure 6 with 

Figure 1, there is no clear dependency between total overall 

demand and volatility score. Nevertheless, small units tend 

to be characterized by a higher volatility. Further reasons 

may be the amount of military aircrafts being controlled in 

the different areas, which seems to be less volatile, and the 

areas of responsibility that control flows to smaller airports, 

which tend to service low-cost carriers. They are more 

likely to be volatile.  

 
Figure 6: Volatility of German sector groups, monthly basis, 2017 

 

4 INFLUENCE ON PERFORMANCE 

4.1 Dependency of Traffic Volatility and Delay 

In order to determine the impact of volatility on 

performance, the interdependence between flights and 

delays is illustrated in Figure 13 and Figure 14 (annex). The 

green and blue dots represent winter traffic, and the yellow 

and red are the corresponding ones for summer. It has to be 

considered that volatility primarily affects airspaces that 

operate at the capacity limit and/or have no possibility for 

airspace adjustments (e.g. by splitting a sector). 

Both figures show a positive correlation between delay and 

demand. This observation is consistent among all ACCs in 

FABEC. Depending on the different demand situation (see 

sections 3a and 3b), the functional correlations depend on 

the ACC coordinated traffic. These different relationships 

are shown in the figures by the functions for Average Delay 

Minutes (ADM). 

One major difference between the ACCs is the spread of the 

data points. For Karlsruhe, there is a higher scattering in 

demand for the winter flights, while delay figures are higher 

in summer. This might lead to the conclusion that volatility 

and delay are correlated negatively. However, looking into 



ENRI Int. Workshop on ATM/CNS. Tokyo, Japan.  (EIWAC 2019) 

7 

 

the figures of Marseille, the effect is the other way around. 

In summer, traffic is characterized by a higher scattering 

and also by higher delay figures. 

The observed interdependencies allow several statements to 

be made. As an example the saturation of airspace is 

important. As soon as the capacity limit is reached, 

volatility has a higher impact on delay than in unsaturated 

airspaces. Since the demand is higher in the summer, the 

delay also increases because the associated sectors are 

working at the capacity limit, thereby not being able to 

increase capacity due to operational or organizational 

reasons.   

However, the effect of saturation is not provable by 

analyses based only on the graphics. The different 

correlations between scattering in demand and delay 

suggest that there are multiple, possibly interacting, effects 

that affect the delay. Therefore, it is necessary to follow an 

approach considering the whole system.  

4.2 Fuzzy Cognitive Mapping 

Humans commonly tend to think that only direct causal 

relations between two concepts exist. Nevertheless, thanks 

to the understanding of complex systems7, we know that 

changes in one variable may have influence on variables 

which were not initially identified, or that one variable may 

generate an unexpected chain of events. With this idea in 

mind, this work is intended to better understand what and 

how volatility may affect or be affected by ATM. To that 

end, a Fuzzy Cognitive Map is developed.   

Cognitive Maps consist of a set of concepts and linkages 

which express cause-effect networks [15,16]. However, 

causes are often uncertain, usually fuzzy. The notion of 

fuzziness was introduced into cognitive maps, giving rise to 

Fuzzy Cognitive Maps (FCM) [17].   

FCM is a participatory, semi-quantitative method that 

allows the integration of views from different experts and 

the construction of a graph structure that can be used to 

analyse scenarios [18]. These maps encourage systematic 

causal propagation (forward and backward chaining), 

helping to identify cascading effects and interdependencies 

across elements (including unexpected trade-offs and 

synergies) that otherwise would be difficult to analyse. 

Furthermore it permits the simulation of scenarios 

according to which policy makers may analyze how the 

system may behave under certain impacts. 

Every concept (C) is defined at a discrete time, so its state 

may change over time (Figure 7). They are related to each 

other through directed arrows that indicate both the 

direction of the causality and the degree of influence one 

concept (C2) can have on another (C6) (positively or 

                                                           

7 Systems in which the many parts that comprise it interact with 

each other and with their environment and whose links give rise 

negatively). Linkages are labelled by weights (W26), 

reflecting the strengths of the relationships between two 

concepts (C2 and C6). Weights are represented by a 

numerical scale from 0 to 1. Once the map has been built-

up, we can identify the cascading effects: in our case, the 

effects occurring in a specific part of the system when there 

is a volatility problem.  

FCM is applied in five steps:  

1. Make a list of concepts/parameters/factors  

2. Connect concepts through arrows 

3. Determine whether the connection is positive or 

negative  

4. Weight the connection (between 0 and 1) 

5. Identify the impacts 

Experts found 39 concepts, such as ticket prices, 

wars/conflicts/crises, oil cost or airspace charges, among 

others. A complex map with these 39 concepts was built 

(see annex, Figure 15). It enabled us to show the 

relationships between them and to determine causes and 

effects of volatility that are usually not discernible to the 

naked eye.  

 

Figure 7: Fuzzy Cognitive Map 

According to the FCM, the concepts with the highest 

capacity to influence other variables or concepts (Out-

degree) are ‘Predictability’, ‘Airspace complexity’ and 

‘Economic activity’. By contrast, the concepts with the 

highest capacity for being influenced by the remainder (In-

degree) are ‘Air traffic flow’, ‘Demand from airlines’, 

‘Airspace complexity’, ‘Demand from passengers’ and 

‘Predictability’. Centrality denotes the individual 

importance of a concept, so ‘Predictability’ and ‘Airspace 

complexity’ are the key variables to be considered when 

deciding certain policies or actions to reduce volatility by 

airlines and air navigation service providers. Finally, FCM 

also allows us to analyze how a change in one concept may 

affect the whole system (step 5). Results indicate that, 

irrespective of the concept we change, almost always the 

same variables are affected, i.e. Airport charges, Airspace 

charges and ATFM Regulation needs (see Table 2). 

to new behaviors that could not be explained by analyzing each 

element separately. 
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In short, these variables should be taken into consideration 

when talking about volatility. They will be the most 

sensitive and problematic aspects in case of external shocks. 

Moreover, being aware of their central position may help 

stakeholders act accordingly, since they may decide 

whether or not to adequate current buffers or to add a few 

new (see, for example, the case of overload for controllers). 

 Out In Centr. 

Economic Activity 2.50 0.00 2.50 

Passenger Demand 1.00 3.50 4.50 

Airline Demand 1.00 4.25 5.25 

Flight ticket price 1.25 1.00 2.25 

ATFM Regulation 1.00 2.50 3.50 

Quality of service 0.50 2.75 3.25 

Air traffic flow 1.00 4.25 5.25 

Flexibility (Ops) 1.00 2.00 3.00 

Complexity 3.50 4.00 7.50 

Overload  0.50 1.75 2.25 

Predictability 4.25 3.50 7.75 

Table 2: Results of Fuzzy Cognitive Mapping 

5 CONCLUSION AND WAY FORWARD 

The present paper develops a general definition to describe 

volatility of air traffic demand for a wide span of reference 

time periods, as well as for geographical scopes. Based on 

macro- and micro-level data, the method was applied on 

various examples ranging from a 1 year to a >50 year period 

along the time axis and from sector level to European 

airspace on the scope axis. The paper shows that volatility 

scores are sensitive to both factors. In addition, the highest 

volatility is observable in December. Rather, unexpected 

are the low volatility scores for summer.  

However, as it is not yet clear which effects are responsible 

for amplification or attenuation of volatility, the paper 

provides an analysis to determine the effect on delay. In 

addition, a FCM is applied to enable a holistic consideration 

of the whole system. In this way, it is possible to show 

which elements are sensitive regarding volatility, e.g. 

caused by external shocks. A quantification, e.g. by 

regression analysis, might be a subject of further research. 

The calculation method represents one potential approach, 

since only one formula was applied, expecting to match 

ATM requirements most. In further studies, it should be 

checked whether the formula have to be adapted or 

substituted by other formulas, partly proposed in section 

3.1. Therefore, a useful applicability on short-, medium- 

and long-term problems is mandatory to be proven in 

further studies. Quantifying the impact on the performance 

of ANSPs might be another research focus with respect to 

cost effectiveness. In addition, it might be beneficial to 

include sectors, sector groups and ACCs of other ANSPs. It 

would enable the consideration of particularly strong, 

unforeseen traffic fluctuations to be incorporated into 

regulatory measures, respectively policy decision making. 
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ANNEX 

 

Figure 8: Elements affecting volatility in traffic demand and flow, according to volatility taskforce 

 

 

Figure 9: Development of Flight Movements worldwide, 1971-2016 (World Bank) 
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Figure 10: Monthly Traffic Movements for DFS ACCs, 2017 

 

 

Figure 11: Medium-term volatility in Flight Hours (PRU Data) 
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ANSP Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Albcontrol 10.47% 10.3% 11.7% 14.6% 17.0% 15.1% 13.0% 12.3% 14.9% 15.2% 12.8% 17.5% 

ANA LUX 18.94% 19.2% 19.1% 17.8% 14.9% 17.6% 12.9% 9.4% 15.8% 17.8% 18.1% 20.0% 

ANS CR 9.84% 7.9% 7.2% 7.3% 5.4% 3.3% 4.0% 2.8% 3.9% 5.9% 10.5% 16.2% 

ANS Finland 14.83% 12.9% 13.2% 14.0% 12.6% 10.9% 7.3% 8.6% 12.5% 11.6% 16.5% 31.7% 

ARMATS 18.42% 11.5% 12.0% 10.0% 7.8% 8.2% 6.5% 8.0% 11.2% 10.8% 13.1% 9.7% 

Austro Control 7.33% 5.9% 5.2% 5.2% 4.3% 3.6% 2.5% 4.2% 3.2% 4.1% 8.3% 14.7% 

Avinor 26.05% 27.9% 27.5% 30.7% 27.0% 23.7% 17.6% 20.8% 26.0% 24.4% 29.8% 55.2% 

BULATSA 5.27% 4.9% 4.3% 6.0% 6.1% 4.8% 3.0% 3.3% 4.6% 5.2% 5.3% 7.8% 

Croatia Control 8.46% 7.5% 8.0% 10.2% 11.3% 10.8% 8.1% 8.8% 11.1% 11.1% 8.1% 15.0% 

DCAC Cyprus 11.29% 12.0% 12.0% 11.9% 10.8% 11.5% 9.9% 8.3% 16.4% 10.7% 13.3% 15.5% 

DFS 10.14% 8.4% 8.3% 7.9% 6.2% 5.6% 5.2% 3.8% 6.1% 5.9% 11.3% 17.7% 

DHMI 3.53% 3.7% 3.4% 3.6% 3.4% 3.2% 2.4% 2.2% 3.1% 3.6% 3.9% 5.7% 

DSNA 8.26% 7.1% 9.0% 4.8% 7.9% 3.9% 1.9% 3.2% 2.3% 3.7% 7.9% 17.5% 

EANS 7.13% 7.7% 6.6% 5.5% 5.1% 4.9% 3.0% 5.7% 4.6% 7.6% 11.1% 12.7% 

ENAIRE 7.04% 5.5% 5.2% 2.9% 4.3% 2.7% 2.3% 2.9% 2.8% 3.6% 4.8% 15.1% 

ENAV 8.49% 8.3% 8.6% 3.9% 9.5% 5.4% 3.6% 4.4% 4.2% 4.2% 9.5% 21.4% 

HCAA 8.62% 7.7% 6.7% 8.2% 8.4% 7.0% 5.3% 5.5% 7.3% 7.9% 7.4% 13.6% 

HungaroControl (EC) 6.11% 5.7% 4.8% 4.3% 5.2% 4.4% 3.0% 2.9% 4.0% 4.7% 5.0% 11.8% 

IAA 10.13% 10.2% 13.7% 5.4% 7.2% 7.3% 5.9% 5.3% 8.0% 8.3% 9.5% 25.8% 

LFV 19.05% 16.7% 16.9% 18.3% 14.0% 12.7% 8.4% 9.4% 13.6% 14.7% 19.9% 27.7% 

LGS 6.30% 5.3% 5.2% 5.1% 3.8% 3.1% 2.8% 3.1% 4.3% 5.7% 8.7% 10.3% 

LPS 6.99% 5.8% 4.9% 5.2% 7.3% 5.6% 4.1% 4.0% 5.4% 5.4% 5.3% 12.8% 

LVNL 15.12% 11.8% 12.6% 10.7% 8.9% 9.4% 8.6% 7.5% 9.1% 8.8% 12.7% 18.3% 

MATS 11.00% 7.4% 6.6% 6.8% 7.9% 9.9% 9.5% 8.7% 11.5% 7.6% 8.0% 15.0% 

M-NAV 10.22% 9.2% 7.2% 13.1% 11.2% 10.4% 7.8% 9.9% 11.5% 11.9% 8.4% 16.3% 

MOLDATSA 15.47% 10.8% 10.5% 9.8% 7.3% 11.1% 11.5% 10.9% 8.2% 7.0% 11.6% 17.2% 

MUAC 8.47% 6.1% 6.6% 5.6% 4.7% 3.9% 3.9% 3.1% 5.0% 4.9% 9.6% 17.4% 

NATS (Continental) 11.42% 9.7% 10.6% 7.8% 7.2% 6.5% 5.4% 5.1% 7.1% 6.7% 11.7% 39.4% 

NAV Portugal  10.46% 10.2% 10.0% 7.5% 6.3% 5.0% 4.3% 5.2% 6.1% 6.7% 9.0% 15.8% 

NAVIAIR 12.51% 9.0% 10.1% 10.5% 8.3% 8.6% 5.2% 6.2% 9.4% 8.8% 14.9% 24.8% 

Oro Navigacija 6.16% 5.1% 5.0% 6.4% 5.7% 5.1% 2.9% 4.0% 5.0% 5.3% 5.3% 10.9% 

PANSA 7.24% 4.7% 4.7% 4.8% 4.3% 3.7% 2.4% 2.4% 3.0% 3.8% 6.5% 14.3% 

ROMATSA 6.90% 5.6% 4.7% 4.0% 4.0% 3.7% 3.3% 3.2% 3.4% 3.9% 4.1% 10.7% 

Sakaeronavigatsia 9.70% 10.0% 8.2% 5.6% 7.6% 8.9% 7.3% 7.6% 8.4% 6.8% 7.5% 7.5% 

skeyes 14.86% 12.2% 14.1% 10.5% 9.1% 10.6% 9.2% 6.9% 9.3% 10.4% 13.8% 19.8% 

Skyguide 10.00% 8.3% 8.1% 5.4% 7.3% 4.1% 2.6% 3.3% 3.3% 4.6% 11.6% 17.3% 

Slovenia Control 10.93% 8.5% 10.6% 12.0% 10.6% 9.6% 8.8% 9.3% 9.9% 10.1% 11.6% 15.4% 

SMATSA 8.65% 6.7% 6.6% 8.0% 8.5% 7.1% 4.1% 4.8% 6.5% 8.4% 8.5% 13.3% 

UkSATSE 10.10% 7.2% 5.9% 5.2% 8.8% 5.5% 5.0% 6.0% 5.8% 5.3% 8.2% 11.2% 

Table 3: Monthly Volatility scores for EUROCONTROL ANSPs, 2018 
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Figure 12: Daily Flight hours, 2017, Sector Groups of Karlsruhe Upper Airspace Control 

 

 

Figure 13: Demand versus Delay, Karlsruhe, 2018 
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Figure 14: Demand versus Delay, Marseille, 2018 
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Figure 15: Fuzzy Cognitive Map 


